在金融数学考研的征途上,掌握代码技能至关重要。以下是一些精选的金融数学考研代码实例,助你一臂之力:
1. 蒙特卡洛模拟:运用蒙特卡洛方法模拟金融衍生品定价。
```python
import numpy as np
def monte_carlo_simulation(S0, K, T, r, sigma, n):
dt = T / n
paths = np.zeros((n+1, n+1))
paths[0, 0] = S0
for t in range(1, n+1):
paths[t, 0] = paths[t-1, 0] * np.exp((r - 0.5 * sigma**2) * dt + sigma * np.sqrt(dt) * np.random.randn())
for i in range(1, n+1):
paths[t, i] = paths[t-1, i-1] * np.exp((r - 0.5 * sigma**2) * dt + sigma * np.sqrt(dt) * np.random.randn())
return paths[-1, :]
Example usage
S0 = 100
K = 100
T = 1
r = 0.05
sigma = 0.2
n = 1000
result = monte_carlo_simulation(S0, K, T, r, sigma, n)
```
2. Black-Scholes模型:应用Black-Scholes公式计算欧式期权价格。
```python
import math
def black_scholes(S, K, T, r, sigma):
d1 = (math.log(S / K) + (r + 0.5 * sigma**2) * T) / (sigma * math.sqrt(T))
d2 = d1 - sigma * math.sqrt(T)
call_price = (S * math.exp(-r * T) * math.erf(d2) - K * math.exp(-r * T) * math.erf(d1))
return call_price
Example usage
S = 100
K = 100
T = 1
r = 0.05
sigma = 0.2
result = black_scholes(S, K, T, r, sigma)
```
3. VAR计算:计算Value at Risk(风险价值)。
```python
def calculate_var(returns, confidence_level):
sorted_returns = np.sort(returns)
index = int(len(returns) * confidence_level)
var = sorted_returns[-index]
return var
Example usage
returns = np.random.normal(0, 0.05, 1000)
result = calculate_var(returns, 0.95)
```
掌握这些金融数学考研代码,助你轻松应对考研挑战!快来体验【考研刷题通】小程序,涵盖政治、英语、数学等全部考研科目,助你一臂之力,轻松备考!🎉🎓【考研刷题通】小程序,你的考研好帮手!🚀📚